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ABSTRACT 

Time-dependent wave functions are used to evaluate the exact transition 

probabilities for a forced harmonic oscillator. The forcing is represented by 

a time-dependent potential, where this potential has a linear dependence on the 

oscillator coordinate. The results are compared with available numerical 

solutions for a harmonic oscillator forced with a potential which has an 

exponential dependence on the oscillator coordinate. The comparison is made 

for the collision of an N2 molecule with another particle, and it is found that 

although the results for the two cases are similar, the linear potential gives 

higher values for the multiquantum transitions. It is then shown that time 

dependent wave functions which contain the corresponding classical motion 

as a parameter provide a good set of functions for a perturbation calculation. 

The energy transfer to these oscillating wave functions is always identical to 

the energy transfer to the classical oscillator. Thus the perturbation value 

of the energy transfer represents the difference between the classical and the 

quantum mechanical result. It is shown that this value, which is zero for 

the linear forcing potential, is very small for higher order potentials, even at 

high velocity of impact. This demonstrates that classical calculations can 

be used to obtain the energy transfer in molecular collisions at high 

temperature. 
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INTRODUCTION 

The relaxation of the vibrational degree of freedom in diatomic molecules 

has been a subject of interest in those gasdynamic flows where the tempera- 

ture of the gas is such that the average molecular energy isof the order of 

the energy of a single vibrational quantum. Under these conditions the vibra- 

tional mode absorbs an appreciable fraction of the energy that is associated 

with the molecular species. At still higher temperatures, where the mole- 

cules dissociate, the vibrational relaxation is of interest as an intermediate 

step in the dissociation process. For both of these cases it is known that 

perturbation calculations of the transition probabilities’ involve assumptions 

that are violated in the important high energy collisions. Thus a reliable 

procedure has not been available for the extension of experimental vibrational 

relaxation data to the high temperature region. In the present paper it is 

shown that the difference between the classical and quantum mechanical solu- 

tions can be calculated directly, and this difference is small even for high 

energy collisions. 

The magnitude of the error associated with first-order perturbation 

calculation has recently been demonstrated by Rapp and Sharp. 2 They have 

performed numerical calculations of transition probabilities for strong inter- 

action of a high speed incident particle with a nitrogen molecule, and have 

shown that their results are much different from perturbation calculations, 

even at temperatures as low as 5000°K. An alternate procedure is the cal- 

culation of vibrational energy transfer on the basis of a purely classical model 

of the oscillator. 384, 5 It has frequently been pointed out6 that such classical 

calculations yield results for the energy transfer which agree with the 



quantum mechanical perturbation results. It has further been shown 798 

that for the forced simple harm-onic oscillator a much closer relation exists 

between the classical and quantum mechanical solutions, since the rate of 

absorption of vibrational energy is identical in the two cases. This result is 

obtained by Kerner7 by using time-dependent oscillating wave functions for 

8 
the quantum mechanical solution and by Bartlett and Moyal by using 

momentum wave functions. 

There remains the question, however, of the degree of accuracy that 

can be expected in using the classical solution in the problem where the 

oscillator is not driven by a purely time-dependent force. In this case the 

oscillatory wave functions no longer give an exact solution to the quantum 

mechanical problem, but do give a solution whose energy is identical to that 

of the classical problem. In the present paper this question is investigated 

by using the oscillatory wave functions as the set of functions in which to 

expand the solution for a perturbation calculation, and the magnitude of the 

perturbation is then a measure of the disagreement between the classical 

and the correct quantum mechanical calculations of the energy. The equa- 

tions are evaluated for N2 collisions, and comparison is made with.published 

numerical results for a 4-level oscillator model. 
2 The results show that 

the classical model should provide correct answers for the energy transfer 

to a simple harmonic oscillator for collision velocities many times greater 

than those that can properly be used in the usual first order perturbation 

treatment. 
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FORCED HARMONIC OSCILLATOR 

It is shown by Kerner in Ref. 7 that if a simple harmonic oscillator 

is forced by a force fii, h t e solution of the time dependent Schrtidinger 

equation can be obtained in the form of an oscillating wave packet9 which 

does not spread with time. Thus if the Schrudinger equation for the 

0 scillator is 

then the solution is given by 

(1) 

where, as for the unforced oscillator, L is the fi th 
Hermite polynomial, 

is a normalizing factor, and ti with M the 

reduced mass and 44 the spring constant. The time 4 is the time at 

which the forcing starts, U. is a function of the time, and &f &‘~2~$+&~. 

Thus the probability density @@ can be that of any stationary state of the 

oscillator, moving in toto with the motion u. Q) . It is shown, 7 then, that -- 

U&l is related to a) by the ordinary differential equation 

Nii+- 45 Ix’ I=&-- (3) 

Thus the center of the wave packet moves exactly as a classical harmonic 
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oscillator would move if driven by the force a). The expectation value 

of the energy of the oscillator is the energy that the classical oscillator would 

have, plus the energy associated with the quantum state. Thus 

The eolution (Eq. (2)) represents a special case of a D’Alembert’e 

principle for quantum mechanics. In general, if W) + is a solution for a 

potential 9 , then W) is the 

solution for a potential 

(5) 

where 2ctd)and w&) are arbitrary functions of the time. Then if the potential 

v&L) is moved with a motion U&) (resulting in a potential v/+-U) ), and at 

the same time a second potential -F& is imposed, this second potential will 

just keep the wave packet centered on KY-+). Thus -$& is the “fictitious 

potential” which permits Newton’s laws (or Schrudinger’s) to apply in the non- 

Newtonian system. The potential a) s f $44” is unique in that v/f) can 

then be put in the form uiik)=$d&+ Fzl+l) I) In the same way the simple 

harmonic oscillator driven by a time-dependent force can be considered a 

unique problem in that the solution for the rate of change of internal energy 

is just equal to that which would be obtained from the classical problem. In 

the present paper we examine the question of how accurate such a classical 

analogy is in the case where the interaction potential is dependent on the 

oscillator coordinate in a non-linear fashion. 

It is shown in Ref. 7 that, to display the transitions between stationary 

states of an oscillator, the wave function given by Eq. (2) can be expanded in 
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terms of the harmonic oscillator functions 

so that 

(6) 

The coefficients & /)rc/k can be obtained from (6) and (2) as 

where 

and 

and 
r^ 

is the lesser of /)rr , N& . The quantity c0 is given by 

(8) 

(so 

Thus (“, is equal to the energy that would have been absorbed by a classical 

oscillator driven by the force F&J ) divided by one quantum of energy for the 

true oscillator. Assuming that an oscillator starts in a stationary state w 

at&.$ , (i.e. uf#)=&$J SO ), and is then driven by a force %.$+), the pro- 

bability that it is in the state # at a time k is given by7 

(10) 

These relations permit multi-quantum transitions, as pointed out in Ref. 7. 

Equation (10) is shown graphically in Fig. 1 form = 0 and several values of 

ti . With m = 0, Eq. (10) is simply 
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(11) 

Equation (10) is also obtained in Ref. 8, where the solution to the forced 

harmonic oscillator was obtained using momentum wave functions. 

In the calculation of transition probabilities by perturbation methods, 

it is assumed that the energy transferred to the oscillator is small compared 

with a single quantum. This corresponds to CO<C/ , and in this case c- 

reduces to 

For /n=,~-/ , there results 

which is the usual perturbation result for the simple harmonic oscillator . 

Multi-quantum transitions depend on higher orders of G0 , and so their pro- 

babilities become equal to zero in perturbation treatment. 

The success of the semi-classical approach to the harmonic oscillator 

problem is usually illustrated in terms of the perturbation result, wherein 

Hence the rate of increase of vibrational energy is just equal to the rate that 

would be calculated classically. However, the oscillating wave packet re- 

sults show that the connection between the quantum mechanical and the classical 

results is much more general, as illustrated in Eq. (4). This ‘conclusion does 

not depend on a perturbation assumption, but only on the representation of the 

interaction potential in the form $@! In th e case of collision of a particle 

with an oscillator, this representation implies that the interaction forces are 
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long range compared both with the extent of the molecular wave function 

and with the amplitude of the oscillation of the coordinate U 49. Departures 

from this condition certainly occur in high energy collisions, and are treated 

in the next section as a perturbation’to the oscillating wave packet solution. 

The second assumption inherent in this approach is the representation of the 

cffcct of the colliding particle as a time-dependent potential. This. approxi- 

mation is discussed in Ref. 6. It requires that the vibrational energy gained 

by the oscillator be small compared with the total energy of the incident 

particle, a condition generally satisfied for collisions of interest in vibra- 

tional energy transfer. 3 Unfortunately this condition is not satisfied in the 

case of an impulsive collision, for which an exact solution is available. 10 

In this case the energy transferred to vibration is of the order of the initial 

translational energy, so the present results cannot be compared with those 

of Ref. 10. 

APPLICATION TO MOLECULAR COLLISIONS 

In this section the vibrational transition probabilities calculated for a 

molecule which undergoes a high-speed collision with another particle are 

compared with those available from numerical calculations. ‘ To accomplish 

this the motion of the molecule and the colliding particle are uncoupled in an 

approximate way, using the method given by Rapp. 284 An incident particle 

A collides with a molecule s-c , the initial relative velocity being /t5; . 

The interaction is described by a repulsive potential &Xl between 4 

and B . (In Ref. 2, the notation Y is used for the oscillator coordinate 

instead of /;25 .) It is assumed that the motion of the incident particle can be 
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described classically and that it is sensibly independent of the degree of 

excitation of the molecule. The classical trajectory xh9 of the incident 

particle is then inserted in the expression for the potential, so that vi+xl 

becomes k&d , a function of the tim.e and the oscillator coordinate. 

There are two interaction potentials discussed in Ref.. 2. The first 

is an exponential repulsion between A B, and 

(13) 

where 

and L is a parameter characterizing the range of the potential. The 

classical trajectory of particle A in this potential, with 4 taken equal to 

zero, is given by 
x -- 
L 

e x 
2e;t 

= set 
;zL 

(14) 

An appropriate time-dependent potential can then be obtained for the oscillator 

by substitution of Eq. (14) ‘into (13), giving 

POT ENTIA L I (15) 

where the substitution has also been made. 

A second potential, very similar to (15), is introduced in Ref. 2 in order 

to obtain an analytic solution to the problem of a two-level vibrator. We in- 

troduce the second potential here because we wish to use it in the comparison 

of results with Ref. 2. This potential is 

(16) 

_____-___ _.- .--.._ .._____.. -_ --__ .._-- --- 



Linear Approximation 

The oscillator transition probabilities given in Eq. (10) are obtained 

for a collision of an incoming particle with the oscillator in the case where 

the potential can be described as vi@=#%= 4&v . If the range of 

the interacting force is large ( *& small), Eqs. (15) and (16) can be written 

in this form. Expanding potential II in powers of %N and neglecting the 

purely time-dependent terms in the potential then results in 

(17) 

The classical energy transferred by this force is to be obtained in the usual 

way from Eq. (3). 

can be calculated. 

treatment of force 

This energy supplies the numerator of Eq. (9) so that ge 

This solution is given for force I in Ref. 4; a similar 

II produces 

(18) 

The transition probabilities can be calculated by using Eq. (18) with Eq. (10) 

(or Fig. 1). 

Following Ref. 2, we take, for N2-N2 collisions, L = 0.2& 

cc, = 4.45 x 1014sec-1, mA= Z/m,-2/m~=4.65 x 10-23gms. The transition 

probabilities obtained in this way for potential II are shown in Fig. 2. The 

results for potential I are similar, except for low velocity collisions, where 

the details of the potential are very important. Also shown in Fig. 2 are the 

transition probabilities obtained numerically by Rapp and Sharp for a 4-level 

oscillator, using the potential II. It is seen that their values for 6 agree 

with those obtained here, up to velocities of about 5 x 1 05cm/sec. However, 

their values for higher order transitions are in considerable disagreement 
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with the simple relation given by Eq. ill), for G” << / 

This is illustrated in Fig. 3, where their values of & divided by e,&./ 

are shown to be much different from unity, even for velocities as small as 

2 x 105cm/sec. The lack of agreement for high energy collisions would be 

expected, since Rapp and Sharp use the exponential potential of Eq. (16), 

where the present method uses only the leading term, as given in Eq. (17). 

The disagreement at lower velocities is surprising, however, since the maxi- 

mum value of - at q = 3 x 105cm/sec is - 0.04. 

Perturbation of Oscillatory Wave Functions 

If the potential in which the oscillator moves is not of the form indicated 

in Eq. (l), the oscillatory wave functions given in Eq. (2) will not provide 

solutions to the Schrodinger equation. However, these functions can be used 

as the set in which to expand the solution for the usual time-dependent pertur- 

bation method. Since the ground-state wave function oscillating with the 

classical motion contains the energy of a classical oscillator, the perturba- 

tion calculations which use such wave functions will supply a measure of the 

departure of the energy of the forced oscillator from the classically calculated 

value. 

Consider a potential of the form 

where &f) is the time-dependent potential driving the oscillator. The 

zero order potential is taken as 

10 
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(21) 

which includes an arbitrary function of the time J&J to adjust the phase of 

the zero-order wave functions. The prime denotes differentiation with re- 

spect to ti . The wave functions then move centered at zCN/ , where a($$$ 

follows the classical motion determined by 

/uniLt as 36 (22) 

Thus &-- replaces the force /%&I in Eq. (3). The motion of the center of 

the wave packet, Ic&] , is then just equal to the motion of a classical oscillator 

acted on by the non-linear force. 

It should be pointed out here that this classical problem, (Eq. 22), cannot 

be solved analytically, and so the calculation presented here does not lead to 

a closed-form answer. The purpose of the present calculation is rather to 

calculate the difference between the classical and quantum-mechanical results, 

that difference being represented by the perturbation. (An alternate procedure 

would be to consider the symmetric force P@ as the zero order term, so 

that the classical problem can be solved. The perturbation then represents 

the difference between the two results shown in Fig. 2. However, this 

calculation has not been given in the present paper. ) 

The perturbing potential is then 

where the variable z has been substituted for the quantity 4-24 , which 

appears as the argument in_Eq. (2). For the case of a potential of the form 

of Eq. (16), ~&j=-~ee 
$ 

se& F and Eq. (23) becomes 
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Proceeding as usual for a perturbation calculation, the solution y&d 

to the Schrtidinger equation for Y/dy q can be written in terms of the 

which are the solutions for the potential . Thus 

where the functions K&d are given in Eq. (2), and the subscript f is 

used to identify the wave function which describes the oscillator 

before the c’ollision. Then 

(25) 

(26) 

where 

and the integral is actually performed on the variable z rather than 4 . 

Jti is chosen to make py = 0. To obtain the relations for transitions 

between stationary states, let the oscillator initially -f- l-4 

Assume that as given by (20), satisfies the condition 

Then 

and the probability that the oscillator is in a state fi at time if *ZOO is 

(28) 

12 
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For first-order perturbation from the oscillating wave function, all &, /&Y 

in the sum are taken equal to their value at A-, vii a-/+~##. 

There results, then, the approximate expression 

(30) 

Equations (30), (29) and (7) can then be combined so that the expression for 

the transition probability is obtained as 

where + is a phase factor given by the condition that the final classical 

motion is 

The transition probabilities given in Eq. 00) for the unperturbed case are in- 

cluded in this sum as the term with 94 ji, s-r while the other terms represent 

the departure from the oscillation of a single wave function. For a force that 

is symmetric in *4 is equal to % . Some improvement can be made 

in the form of Eq. (31) by combining the terms with BPZ and 94 interchanged, 

so that 

(32) 

where 

13 
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and d&y has been chosen SO that z$ =o. 

To obtain a specific numerical result, consider the expansion of the 

potential given in Eq. (16) in powers of ?p , and retain terms through 

Then, from Eq. (20) 

where 24 is defined by 

From Eq. (27) and Ref. 9, 

=0 ofherwb, 

and from (32) 

and Iti = 0. Thus for # = 0 

P cm/e -6, a 
0+#S 0 f s,2 + 2./<‘gXza;- 

Using the figures given before for N2-N2 collisions, and Eq. (8) for $a . s?/tr 

14 
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(33) 

where q is given in cmlsec. The oscillatory wave function result (and 

therefore, for the energy, the classical result) is given by the first term. 

Thus the departure from the classical result for the rate of energy absorption 

is 

Using Eq. (33) for =n , S the summations can be performed to give 

Since the classical result is just KC&&~* , the fractional departure is 

This fraction is very small, even for large velocities; e. g. for x = 1 06cm/sec, 

K= s/x/o 

Ee 

-9 (“:E.) 

0 

Thus, even though the classical result for the energy transferred C&W6e) 

has not been evaluated, this equation shows that the classical answer will be 

very close to the quantum mechanical result. 
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SUMMARY 

It is shown that the linear forced-harmonic-oscillator solution of 

Kerner can be used to obtain an approximate solution for vibrational transi- 

tions of a diatomic molecule. The transition probabilities that are obtained 

are compared with the numerical solution of Rapp and Sharp for N 
2-N2 

collisions. An oscillating forced-harmonic-oscillator solution is then used 

as the basis set for a perturbation calculation, where the magnitude of the 

energy transfer associated with the perturbation is equal to the difference 

between the correct quantum mechanical result and the classical result. 

It is shown that this value is small, even for high-energy collisions. Thus 

a classical calculation of the energy transfer between a simple harmonic 

oscillator and a collision partner should give an accurate result, and the 

small difference between it and the quantum mechanical result can be 

evaluated. 
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